

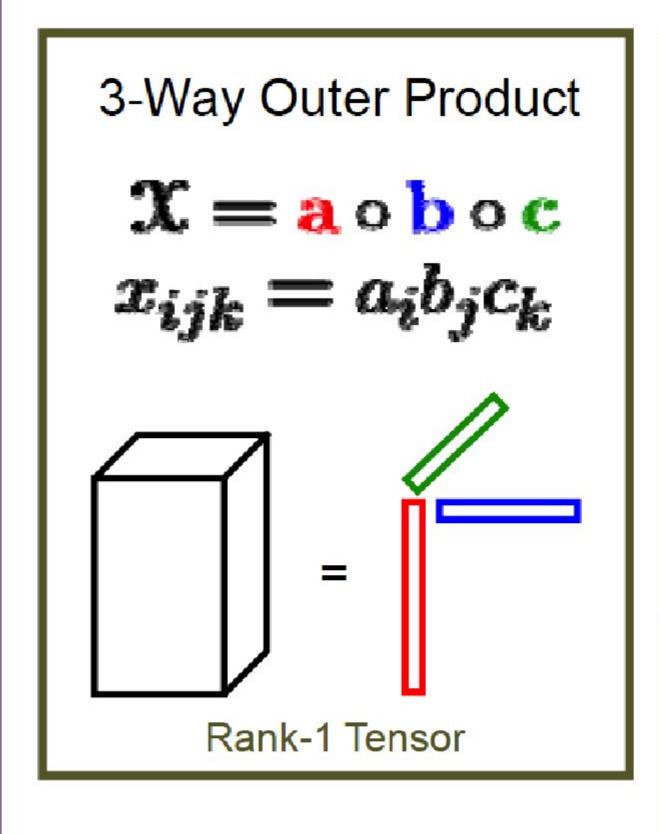
Tensor Attention Training:

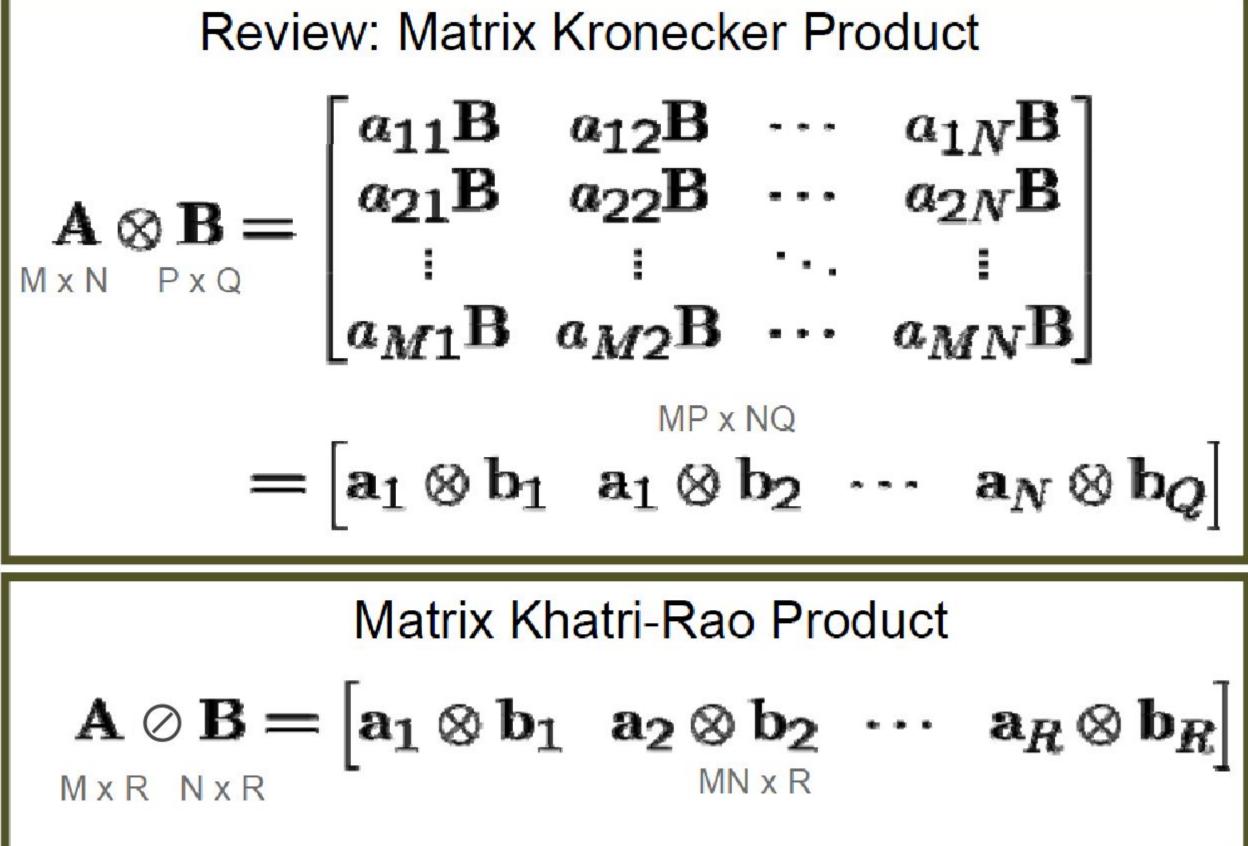
Provably Efficient Learning of Higher-order Transformers

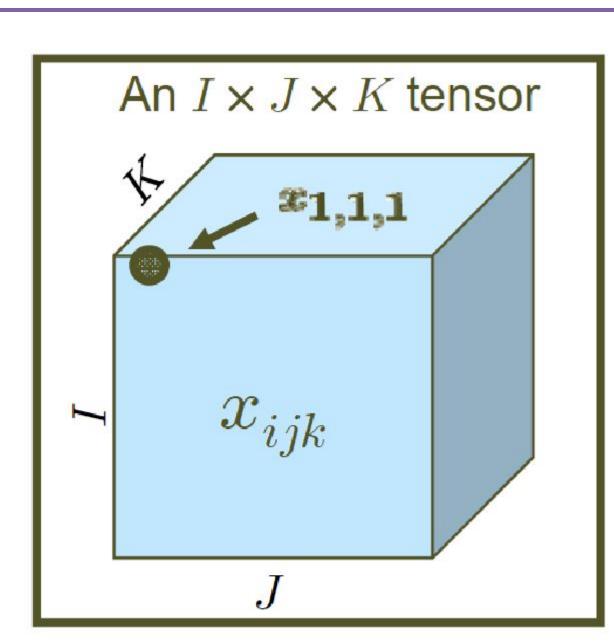
Yingyu Liang, Zhenmei Shi, Zhao Song, Yufa Zhou

Background

⊗ Kronecker product and ⊘ Kathri-Rao product



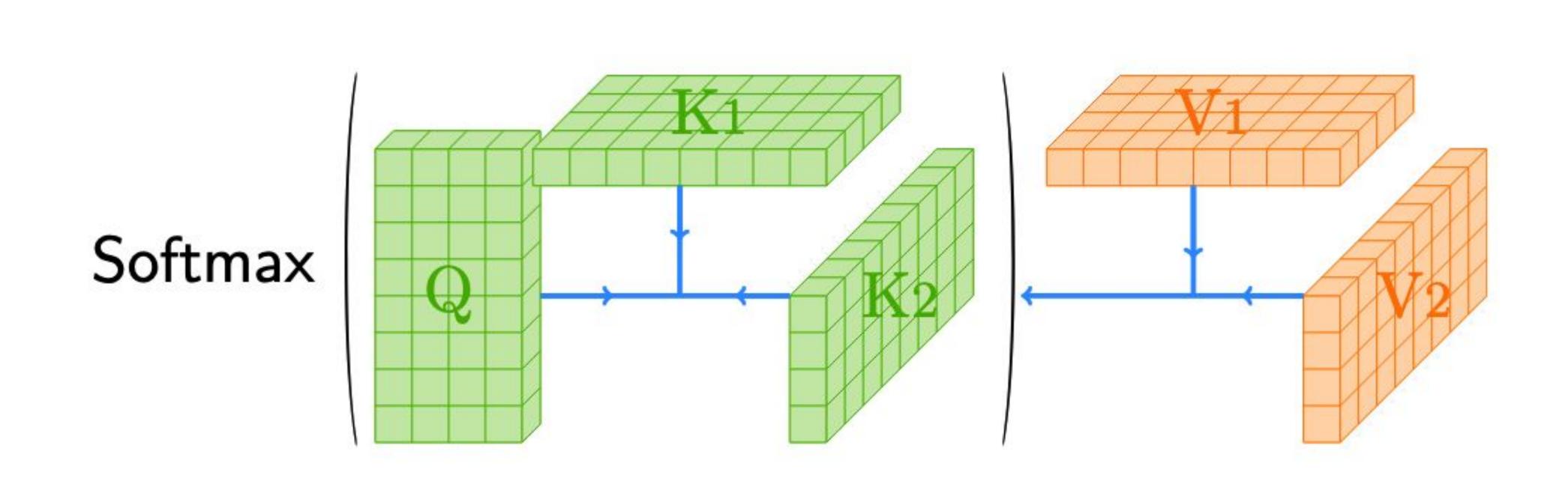




 $3^{\rm rd}$ order tensor mode 1 has dimension I mode 2 has dimension J mode 3 has dimension K

Source: CSE 6363 Machine Learning from UT Arlington

Motivation



Tensor Attention, defined as $\mathsf{Softmax}(Q(K_1 \oslash K_2)^\top)(V_1 \oslash V_2)$, is a higher-order generalization of matrix attention that can capture high-order/multi-view information intrinsically. Meanwhile, it faces a cubic computational complexity bottleneck. Therefore, in this work, we pose the following question:

Can we achieve almost linear time for gradient computation in Tensor Attention Training?

Problem Setup

Definition 1 (Tensor attention optimization)

Suppose $A_1,A_2,A_3,A_4,A_5,E\in\mathbb{R}^{n\times d}$ and $Y_1,Y_2\in\mathbb{R}^{d\times d}$ are given. Let $D(X)=\mathrm{diag}(\exp(A_1X(A_2\otimes A_3)^\top/d)\mathbf{1}_{n^2})\in\mathbb{R}^{n\times n}$ and $Y=Y_1\otimes Y_2\in\mathbb{R}^{d^2\times d}$. We formulate the attention optimization problem as:

 $\min_{X \in \mathbb{R}^{d \times d^2}} \mathsf{Loss}(X) := 0.5 \|D(X)^{-1} \exp(A_1 X (A_2 \otimes A_3)^\top / d) (A_4 \otimes A_5) Y - E\|_F^2.$

Definition 2 (Approximate Tensor Attention Loss Gradient Computation (ATAttLGC (n,d,B,ϵ))

Suppose $A_1, A_2, A_3, A_4, A_5, E \in \mathbb{R}^{n \times d}$ and $X_1, X_2, X_3, Y_1, Y_2 \in \mathbb{R}^{d \times d}$. Let $X = X_1 \cdot (X_2 \oslash X_3)^{\top} \in \mathbb{R}^{d \times d^2}$. Let $\epsilon, B > 0$. Assume that $\max\{\|A_1X_1\|_{\infty}, \|A_2X_2\|_{\infty}, \|A_3X_3\|_{\infty}, \|A_4Y_1\|_{\infty}, \|A_5Y_2\|_{\infty}\} \leq B$. Let us assume that any numbers in the previous matrices are in the $\log(n)$ bits model. Then, our target is to output a matrix $\widetilde{g} \in \mathbb{R}^{d \times d^2}$ to approximate the gradient of the loss function in **Definition 1**, satisfying $\|\widetilde{g} - \frac{\mathrm{dLoss}(X)}{\mathrm{d} X}\|_{\infty} \leq \epsilon$.

$$\min_{X \in \mathbb{R}^{d \times d^2}} 0.5 \left\| \left(n \right\|_{X}^{n} \right) \times \exp \left(n \left\| \frac{d}{A_1} \right\|_{X}^{d} \times d^2 \right\|_{X}^{d^2} \times d^2 \left\| \frac{d^2}{(A_2 \otimes A_3)^\top} \right\|_{X}^{n} \times d^2 \left\| \frac{d}{A_1} \right\|_{X}^{d} \times d^2 \left\| \frac{d}{A_1} \right\|_{X}^{n} \times d^2 \left\| \frac{d}{A_2} \right\|_{X}^{n} \times d^2 \left\| \frac{$$

Main Results

Theorem 1 (Fast gradient computation)

Assume that any numbers in the matrices are in the $\log(n)$ bits model. Then, there exist an algorithm that runs in almost linear time $n^{1+o(1)}$ to solve

$$\mathsf{ATAttLGC}(n, d = O(\log n), B = o(\sqrt[3]{\log n}), \epsilon = 1/\operatorname{poly}(n)).$$

Theorem 2 (Hardness)

Assume Strong Exponential Time Hypothesis (**SETH**). Let $\gamma:\mathbb{N}\to\mathbb{N}$ be any function with $\gamma(n)=o(\log n)$ and $\gamma(n)=\omega(1)$. For any constant $\delta>0$, when $E=0,\ \mathbf{Y}=\mathbf{I}_d,\ \mathbf{X}=\lambda\mathbf{I}_d$ for some scalar $\lambda\in[0,1]$, it is impossible in $O(n^{3-\delta})$ time to solve

$$\mathsf{ATAttLGC}(n, d = \Theta(\log n), B = \Theta(\sqrt[3]{\gamma(n) \cdot \log n}), \epsilon = O(1/(\log n)^4)).$$