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® Kronecker product and @ Kathri-Rao product

3-Way Outer Product

X=aoboc
Tk = GibiCE

MxN PxQ

= [ay

Rank-1 Tensor

MxR NXxR

Review: Matrix Kronecker Product

a;1B  a12B
ARB= a21B axpB --- asyB

aMIB aMgB =ve ﬂ'MNB

Matrix Khatri-Rao Product
AOB= [a1 @b; ax @by --- aR®bR]

An I x J x K tensor
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MP x NQ

@by a1 @by - ay®hg)

3™ order tensor
mode 1 has dimension [
mode 2 has dimension .J

mode 3 has dimension K

Source: CSE 6363 Machine Learning
from UT Arlington
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Softmax

Tensor Attention, defined as Softmax(Q(K; @ K2)')(V1 @ V2) , is a higher-order generalization of matrix
attention that can capture high-order/multi-view information intrinsically. Meanwhile, it faces a cubic computational
complexity bottleneck. Therefore, in this work, we pose the following question:

Can we achieve almost linear time for gradient computation in Tensor Attention Training?
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Problem Setup

/Definition 1 (Tensor attention optimization) \
Suppose Ay, Ay, Ag, Ay, A5, E € R"™%and Y;,Ys € R4 are
given. Let D(X) = diag(exp(A;1 X (42 ® A3) ' /d)1,,2) € R™*™

and Y =Y10Y, € R¥*¢ e formulate the attention optimization

problem as:
min Loss(X) := 0.5]|D(X) ! exp(A1 X (A2 ® A3)" /d) (A4 @ A5)Y — E||%.
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/Definition 2 (Approximate Tensor Attention Loss Gradient Computation (ATAttLGC(n, d, B, €))
Suppose A1, Ag, Az, Ay, A5, E € R™% and X1, X, X3,Y1,Y2 € R¥™4  LetX = X; - (Xo 0 X3)T € R¥*4* et
e, B > 0.Assume that max{||A1X1||co, [|[A2X2]||0o, |[A3X3]||co, ||A4Y1|lc0, ||A5Y2||cc} < B . Letus

assume that any numbers in the previous matrices are in the log(n) bits model. Then, our target is to output a
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matrix § € R*% to approximate the gradient of the loss function in Definition 1, satisfying
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Main Results
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model. Then, there exist an algorithm that runs in almost linear time

KI' heorem 1 (Fast gradient computation)

Assume that any numbers in the matrices are in the log(n) bits

n1to() {5 solve

ATAttLGC(n,d = O(logn), B = o(</logn),e = 1/ poly(n)).
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Kl'heorem 2 (Hardness) \

Assume Strong Exponential Time Hypothesis (SETH). Let v : N — Nbe any function with v(n) = o(logn)

and «(n) = w(1).Forany constant § >0 ,when & =0, Y = lg, X = Alg for some scalar ) € [0, 1],

it is impossible in Q(n3—9) time to solve

ATAttLGC(n,d = ©(logn), B = ©({/v(n) -logn),e = O(1/(logn)*)).
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